If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+16y-9=0
a = 4; b = 16; c = -9;
Δ = b2-4ac
Δ = 162-4·4·(-9)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-20}{2*4}=\frac{-36}{8} =-4+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+20}{2*4}=\frac{4}{8} =1/2 $
| 3(4x5)=45 | | 15x°+15°=900 | | 24=2h+10 | | 9x-2x=140 | | (2x-3/7)=(3x/7)-2x | | 11=z+9 | | 5x-2-8-9x-3=0 | | 3x-2x(x-1)=-2x×x+7x-12 | | (x-2)/(3x+2)=1 | | 48/40=x | | 100/x=48/40 | | 40/x=48/100 | | 2n×6=30 | | 88÷x=8 | | 1/4r-3=9 | | 9=-5x+34 | | 3z/7-3=4 | | 22-6y/2=0 | | 2y+2y+3(2y)-20=106 | | 2m-13-3=6m+27 | | 29=7x-41 | | 900=n2×180 | | 12x+2=-4x+38 | | X+2(3x)=320 | | X=1y=4 | | 9x-6x+4x-x=20 | | (7x)-(5X)=21-3 | | x-4=5x/7 | | 2x-17=3+x | | y^2-45y+324=0 | | X=70-8x3 | | y^2-45y+328=0 |